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Learning objectives

Hierarchical organization in normal tissues and cancer

Definition and functional properties of Cancer Stem Cells (CSCs)
Assays and methods to detect CSCs

In vivo evidence for CSCs

Prospects of Targeting CSCs
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Hierarchical organization principles in development

hierarchical organization

transient progenitor populations with
increasingly narrowed potential

successive patterning and specification
events

repeated use of few, conserved signaling
pathways (Wnt, BMP, FGF, HH, Notch, ...)
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Hierarchical organization in tissue homeostasis

7_ Embryonic patterning I
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CSC in AML.: the first study

'@3 © 1997 Nature Publishing Group http://www.nature.com/naturemedicine
ARTICLES

Human acute myeloid leukemia is organized as a hierarchy
that originates from a primitive hematopoietic cell

DOMINIQUE BoNNET & JoHN E. Dick

Department of Genetics, Research Instifute, Hospital for Sick Children and Department of Molecular and Medical
Genetics, University of Toronto, 555 University Avenue, Toromto, Ontario MSG IX8, Canada
Cort lerice should be add) toJ.E.D.
Department of Genetics, Research Instrtute Hospital for Sick Children, 555 University Avenue, Toronto, Ontario,
Canada M5G 1X8
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CSC in AML.: the first study
frequency of CSCs and their multipotency

Table 1 Patient-to-patient heterogeheity in expression of CD34 and CD38 antigens

Patient FAB Age/Sex Level of engraftment Percent of Percent of Estimated frequency

subtype of NOD/SCID mice with CD34 CD34CD38 of SL-IC per 10°
10-20 x 10° MNCs in MNCs in MNCs MNCs

1 M1 64/F 7410 43 0.8 100-200

8 M4 62/F 45+ 8 80 1.0 1

10 M4 58/M 62+5 11 0.75 0.2

12 M4 65/M 76+ 6 2.0 0.2 49

13 M4 69/M 37x7 95 2.0 0.2

14 M4 59/F 2819 1.1 0.2 2

18 M5 71/F 18+ 6 0.3 0.02 0.2

FAB, French-American-British criteria® for subtypes; NOD/SCID mice, non-obese diabetic mice with severe combined immunodeficiency disease;
MNCs, mononuclear cells; SL-IC, SCID leukemia-initiating cell.
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CSC in AML.: the first study
serial transplantation assays

CD34-
Human:Mouse
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Definition of Tissue-specific vs. Cancer Stem Cells

heterogeneous population of undifferentiated cells,

defined by functional assays and capable of:

1) self-renewing/self-maintaining their population

self-renewing/self-maintaining their population

2) production of differentiated, functional progeny (multipotency)

production of heterogeneic, (abberantly) differentiated progeny

3) regenerating a functional tissue after injury or upon transplantation

regenerating an exact copy of the primary tumor upon transplantation

4) interaction with an appropriate environment (niche), homing to the niche

self-sufficiency in growth stimulatory signals, evasion of growth-restrictive signal

stem cell O

Population\ \,/ 7 D — .)

) .
o 4 transit
amplifying differentiated
stem cell cells progeny

niche



Cell of origin




Cues controlling intestinal homeostasis
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Intestinal stem cell specific gene modification (Lgr5-Cre)
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|5 days after induction

8 days after induction

Stem cell specific induction of APC loss induces cancer
(Lgr5-Cre x APClox/lox)

PSR B-catenin [ B8
. NV e

24 days after induction




APC loss in any epithelial cell fails to induce cancer
(Ah-Cre x APC lox/lox)

3 days after induction
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Rare Lgr5+ population in adenomas

k N Lgr5-EGFP in 36 day tumours Apc™" control
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CSCs in cancer progression
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Linear Cancer Progression Model

Transformation Neo-Angiogenesis Motility &
Invasion

Macro- Extravasation Transport to
Metastasis & Colonization Secondary Organ
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7AAD /| CD45/ CD31
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Murine breast cancer model: MMTV-PyMT

Isolation of CD24*CD90* cancer stem cells

Malanchi et al., Nature 2012
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The CD24*CD90* population is responsible for

metastasis initiation

(cells isolated from primary tumors)

CD90+CD24+ CD90CD24depleted
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The CD24+*CD90* population is responsible for

metastasis re-initiation

(cells isolated from metastasis)
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Early metastatic colonization relies

on cancer stem cells

3 hours 1 week 2 weeks 4 weeks

-
o

-
+

—
—

0.01+

% tumor cells in the lung

3h 1week 2weeks 4weeks Malanchi et al., Nature 2012



3 hours

Early metastatic colonization relies

on cancer stem cells

1 week 2 weeks
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Changes in the Relative Amount of Cancer Stem Cells
during Metastatic Progression
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Functional characterization of CSCs
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Assaying CSCs: Transplantation

- Transplantation

the assays to functionally identify a CSC population require transplantation

into mice
which recipient strain?
immuno-deficient for xenotransplantation of human cells or mouse cells with foreign cDNAs
— Nude (no thymus => hardly any of3T cells, but B cells, yoT cells and all other innate
immune cells)
— RAG or NOD/SCID (neither T nor B cells, but innate immune cells)
— RAG/cg or NOD/SCID/cg=NSG (in addition lack of NK cells, less myeloid cells)
which route?
— subcutaneous (artificial morphology)
— kidney capsule
— orthotopic (good morphology and invasion possible, but often difficult to perform)
— tail vein (metastasis-type of experiments, requires high cell numbers)
which other variables?
— cells embedded in ECM proteins

only selection for the most robust cells?

only selection for cells which can cope with the species barrier (lack of factors)?

25
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Detection of CSCs can depend on the transplantation system

transplantation into NOD/SCID

o0 XXX Cells per
o E injection
o3 XXX XXX XXX X X
LfE - XXX XX X X 102
= X X
321 . 104
L X . 105
2. 247eee . 108
b ol —
QE L R X 107
28 161
8 8 [ ] : : : : ' ® [ X X J (5)
= B I e i
* eee 6) (3)
0= _—
193 205 214 308 320 326 405

Patient

Time after | Melanoma-initiating cell frequency
injection (95% confidence interval)

8 weeks 1/837,000 (1/512,000-1/1,370,000)
32 weeks | 1/111,000* (1/67,000-1/185,000)
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Detection of CSCs can depend on the transplantation system

transplantation into NSG

Patient Mouse strain Co- Number of tumours / number of injections Melanoma-initiating cell frequency
injection cells per injection (95% confidence interval)
50,000 5,000 50 5
- NOD/SCID Vehicle 0/3 0/6 0/3 (<1/60,000)
NOD/SCID ll2rg™=  Matrigel 6/6 4/6 1/5* (1/2-1/13)
- NOD/SCID Vehicle 0/3 0/6 (<1/5,100)
NOD/SCID li2rg™~ Matrigel 6/6 1/6 1 (1/6-1/40)
492 NOD/SCID Vehicle 3/3 3/6 0/6 1/7,300 (1/2,400-1/22,300)
NOD/SCID /l2rg™~ Matrigel 6/6 2/6 1/11* (1/4-1/31)
Al NOD/SCID Vehicle 3/6 3/15 0/15 1/46,700 (1/19,600-1/110,900)
NOD/SCID ll2rg™~ Matrigel 18/18 7/18 1/9* (1/5-1/18)
Vol 456/ 4 December 2008/ doi:10.1038/nature07567 nature

Efficient tumour formation by single
human melanoma cells

Elsa Quintana'*, Mark Shackleton'*, Michael S. Sabel®, Douglas R. Fullen®, Timothy M. Johnson® & Sean J. Morrison’
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Proliferation is similar in CSCs and nonCSCs but tumor

induction upon transplantation differs

Primary tumors

100+

n

E 80

S o 60

v E 40

2 3 20
=%

0

Cell line KG-1 THP-1 HL60 K562
Marker subset| CSC+ CSC- CSC+ CSC- CSC+ CSC- CSC+ CSC-

Frequency of

tumorigenic cells

1/2164 1/68078**

1/2164 1/280030**

1/4170 1/68078**

1/10720 1/135931**

Cell line

Marker subset
Frequency of
tumorigenic cells

MCF-7

CSC+ CSC-

1/2164 1/280030**

MDA-MB-231
CSC+ CSC-

1/4170 1/108957**

SHG44
CSC+ CSC-

1/2164 1/135931**%

U251

CSC+ CSC-

1/2164 1/280030**

Cell line

Marker subset
Frequency of
tumorigenic cells

HT-29

CSC+ CSC-

1/4170 1/280030**

SW480

CSC+ CSC-

1/2164 1/108957**

SW620
CSC+ CSC-

1/2164 1/280030**

A375

CSC+ CSC-

1/4170 1/43259*

Huang et al. PlosOne 2013



Co-transplantation of CSCs and non CSCs allows
nonCSCs to participate in cancer growth

KG-1
(AML)

MCF-7 SHG44 Caco-2
(Breast cancer) (Glioblastoma) (Colon cancer)

A375
(Melanoma)

m TCs"®:TCs“t¢ (DsRed:EGFP) in injections
O TCP%.derived :TCVE®.derived (DsRed:EGFP) cells in xenografts

TCFOS: CSC marker positive tumor cell
TCNEG: CSC marker negative tumor cell
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Huang et al. PlosOne 2013
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In vivo evidence for CSCs
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Random labelling reveals CSC plasticity in vivo
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Random labelling reveals CSC plasticity in vivo
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Direct Evidence for Cancer Hierarchy in Patient Samples

Single-cell RNA-seq
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oligodendroglioma:
incurable glioma characterized
by mutations in IDH1 or IDH2
and 1p/19q co-deletion

single cell RNA sequencing
reveals composition with two
major populations of glial cells
of the astrocyte or
oligodendrocyte lineage

Tirosh et al., Nature 2016



Stemness score
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Direct Evidence for Cancer Hierarchy in Patient Samples
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G2/M phase score
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Direct Evidence for Cancer Hierarchy in Patient Samples

Stemness scora
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Different levels of hierarchical organization

Steep hierarchy Shallow hierarchy

» Some hierarchies might be steep in which tumor-initiating cells are rare but give rise to numerous non-
tumorigenic cells

» Other hierarchies might be shallow in which tumor-initiating cells are common but give rise to a small
number of non-tumorigenic cells

* Some cancers may have almost no hierarchy, with very few non-tumorigenic cells.

The shallower the hierarchy, the lower the value of distinguishing between tumorigenic and non-tumorigenic

cells in order to understand cancer biology and improve therapy.

Meacham & Morrision, Nature 2013
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Hierarchical Organization in Cancer
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Clonal evolution of Cancer

first mutation
transforming
normal cell

second mutation third mutation fourth mutation

" disseminated
cells blood vessel

M e

benign lesion adenoma adenocarcinoma invasive cancer

clonal evolution
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Clonal evolution of CSCs

CNA profiling

Paired analysis
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Clonal evolution of CSCs: CML
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Clonal evolution of CSCs: CML
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Clonal evolution of CSCs

a CNA profiling
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Limiting

ARTICLE

doi:10.1038/nature09733

Evolution of human BCR-ABLI
lymphoblastic leukaemia-initiating cells

Faiyaz Notta"?*, Charles G. Mullighan®*, Jean C. Y. Wang'**, Armando Poeppl', Sergei Doulatov'?, Letha A. Phillips®, Jing Ma®,
Mark D. Minden®, James R. Downing® & John E. Dick'?

Paired analysis
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Markers to identify CSCs
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Markers to isolate CSCs

Melanoma Ovarian Pancreatic Prostate
ALDHA1 ABCB5 CD15 CD13 ABCG2 ABCBS5 CD24 ABCG2 ALDHA1
CD24 ALDH1 CD90o CD24 ALDH1 ALDHA1 CD44 ALDHA1 CD44
CD44 B-catenin CD133 CD44 CD90 CD20 CD117 CD24 CD133
CD90 activity a6-integrin CD90 CD117 CD133 CD133 CD44 CD166
CD133 CD24 nestin CD133 CD133 CcD271 CD133 a2p1-integrin
Hedgehog-Gli CD26 c-Met ab-integrin
activity CD29 CXCR4 Trop2
a6-integrin CD44 Nestin
CD133 Nodal-Activin
CD166
LGR5

all current markers are not specific for CSCs, but are expressed by many other cells outside of the
tumor
this makes direct targeting of the CSC population using these markers unlikely
most current markers are not stem cell markers for the normal tissue stem cells where the tumor
derives from
-exceptions: CD34/CD38 for human leukemia/HSC
CD133 for human glioblastoma/neuronal stem cells
Sca1/c-kit for mouse leukemia/HSC
CD34 for mouse SCC/skin stem cells
nearly all current markers play no functional role in CSCs or normal stem cells
-exceptions: CD44 for glioblastoma and colon cancer
Sca1/c-kit for mouse leukemia/HSC
CD34 for mouse SCC
markers that were originally characterized in a limited number of tumours have often been assumed to
be generalizable. Such markers have frequently been used in other tumours, or even in cell lines,
without independent confirmation that the markers were informative in these contexts
in some cancers CSCs express different markers depending on the causative mutations
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CSC marker positive cells (%)
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CSC marker expression can be heterogeneous

00-
#—Caco-2
* .
:—swazu *
*
*—HT-
*—KG-1 . a il +—A375
. ® . ® *
-
10- . . :
+—HL60
L. & L
4 S *—K562
& L ] +*
*—THP-1 2 B ¢—MCF-7 ¢4 _SHGA4 ”
> “ e U251
* * ¥ * @
1 - et ® e ® *
s * &
4 + 3
% : & 4
&
CoLO320
FUS? LoVo
rust ﬁLSWdT
0.1 . . o T : O .
ANL APL CML Breast cancer Glioblastoma Colon cancer Melanoma

€ CSC marker expressing primary tumor
€ CSC marker expressing tumor cell line
O CSC marker non-expressing primary tumor
O CSC marker non-expressing tumor cell line

Huang et al. PlosOne 2013
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Within one tissue, CSC markers may depend on the
genetic cause of tumorigenesis
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Within one tissue, CSC markers may depend on the
genetic cause of tumorigenesis
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Stability of the CSC phenotype
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Stability and Induction of CSCs

any experiment only represents a snapshot in time: can nonCSCs generate CSCs ?

CD44CD24 cell CD44-CD24* cell

breast cancer cells

CD44+CD24
cells

CD44+CD24* cell CD44-CD24- cell IL-6

CO44-C024- cells  CD44-C024* cells

‘G

Marotta et al., JCI 2011



Stability and Induction of CSCs
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In vivo ablation of CSC is only transient
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CSC frequency during metastasis formation
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In vivo ablation of CSC can prevent metastasis formation
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Targeting CSCs
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Promises and challenges of the cancer stem cell concept

Targeted elimination of CSC will induce complete tumor

regression and prevent recurrence

tumor loses
the ability to generate
new cells

It is central to identify signaling pathways which are
critical for cancer stem cell maintenance, however are

not essential for normal tissue homeostasis
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Resistance to therapy

breast cancer chemotherapy
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moreover: CSC show increased resistance to

DNA damaging agents (e.g. radiation)
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sensitizing CSCs to standard therapy

Therapeutic approaches
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Therapeutic approaches

sensitizing CSCs to standard therapy
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Therapeutic approaches
sensitizing CSCs to standard therapy
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HoxA5 expression reduces intestinal Lgr5* stem cells
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HoxA5 expression reduces Cancer Stem Cell properties in vivo
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Retinoic Acid counteracts tumour initiation driven by Wnt in vivo
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atRA Counteracts Tumour Initiation Driven by Wnt in vivo

B-catenin

Ordonez et al., Cancer Cell 2015
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Retinoid induced differentiation therapy requires HoxA5
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